Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomed Res Int ; 2022: 2743046, 2022.
Article in English | MEDLINE | ID: covidwho-1891948

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a novel infectious respiratory disease called COVID-19, which is threatening public health worldwide. SARS-CoV-2 spike proteins connect to the angiotensin converting enzyme 2 (ACE2) receptor through the receptor binding domain and are then activated by the transmembrane protease serine subtype 2 (TMPRSS2). The ACE2 receptor is highly expressed in human nasal epithelial cells. Nasal ciliated cells are primary targets for SARS-CoV-2 replication. However, the effect of SARS-CoV-2 on the upper respiratory tract remains unknown, thus leading to the purpose of our study. We investigate the effects of SARS-CoV-2 on cytokines and mucin expression in human nasal epithelial cells. Methods: We investigated the effects of the SARS-CoV-2 spike protein receptor binding domain (RBD) on cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B expression via real-time PCR, ELISA, periodic acid-Schiff (PAS) staining, and immunofluorescence staining in cultured human nasal epithelial cells. Results: The mRNA expression and protein production of cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B were increased by SARS-CoV-2 spike protein RBD. ACE2 receptor inhibitor suppressed the expression of cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B induced by SARS-CoV-2 spike protein RBD. Conclusions: SARS-CoV-2 induced cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B expression through the ACE 2 receptor in human nasal epithelial cells. Therefore, ACE2 receptor inhibitors can be an effective therapeutic option for SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL